
dc to $\mathbf{1 8}, \mathbf{2 6 . 5} \mathbf{~ G H z}$

Features and description

- Exceptional reliability, long life (5,000,000 cycles minimum)
- Excellent repeatability
- Compact
- Easy GPIB implementation for ATE applications
- Single-pole, multiple-throw models available:
three-throw (8766K)
four-throw (8767K)
five-throw (8768K)
six-throw (8769K)
This Agilent Technologies family of singlepole, multiple-throw switches utilizes the same proven technology as the well known Agilent 849X family of step attenuators. These products offer the same rugged reliability, excellent repeatability (typically 0.01 dB to 18 GHz and 0.05 dB to 26.5 GHz), long life (greater than 5 million switching cycles), compactness, and broadband performance as the 849X family. Each product consists of 2 to 5 solenoid driven switching sections connected in series. The solenoid armatures are held in place with permanent magnets able to withstand shocks over 10 g 's.

The sections switch within 20 milliseconds, including contact settling time, which is of importance for automatic test applications. The switches include self-interrupting contacts which minimize power consumption and simplify the driver circuit design (figure 1). Each model is available with a wide range of solenoid voltage choices (24 volts, standard, or optionally 5 or 15 volts) to match your product or system's requirements.

Section switching

Figure 1 shows one switching section schematic. Each section utilizes one solenoid with dual coil windings, one coil to switch in the RF connector, and one coil to switch in the thru line.

With a positive voltage applied to the common pin, the state (RF connector or thru line) of a particular section is determined by connecting its RF connector pin or thru pin to a negative voltage or ground. Tables 1 through 4 define the pin assignments for the different switches.

As a section is switched, the internal contacts of the activated coil open, thus shutting off current flow. At the same time, the internal contacts for the other coil close so that it can be activated when desired. Figure 1 shows a section that has been switched to the RF connector position (note the closed thru line coil contact). The switching is "break-before-make" type, thus a momentary interruption of the RF signal occurs at switching.

Although all sections can be switched simultaneously, the attenuator drive must not allow both pins of the same section (e.g., section 1 , pins 5 and 6) to be activated concurrently, or else that section would cycle rapidly. All terminals are "floating," so bipolar or unipolar power supplies may be used.

Typical driver circuit

Figure 1 shows an economical TTL compatible driver circuit for a single switching section utilizing an IC relay driver and an inverter. A TTL "HI" input to the driver switches in the RF connector, while a "LO" will activate the thru line for that section. This provides a complementary driver for the section which assures that only one solenoid of the pair is activated at a time. Diode protection is required to protect the IC from the solenoid voltage flyback.

Switch position can be indicated remotely by utilizing the open and closed states of the internal coil contacts. Figure 1 displays two indicator circuits, one providing a TTL output and one that activates an LED. These circuits will output a TTL "HI" (LED lamp "ON") if the RF connector is in the RF circuit, and will output a TTL "LO" (LED lamp "OFF") if the thru line is in the RF circuit. Since current is drawn through the coil for these circuits, inadvertent switching is prevented by limiting the current to 5 mA .

Agilent assumes no responsibility for the use of any circuits described herein and makes no representation or warranties, express or implied, that such circuits are free from patent infringement.

GPIB attenuator/switch driver

Employing programmable Agilent step attenuators and switches in an automatic test system becomes an easy task when the Agilent 11713A or 87130A attenuator/ switch driver is specified into the system. The 11713A has all of the necessary features to provide GPIB control of up to ten switching sections of the 8766/7/8/9 series switches (e.g., five 8766s, two 8769s, etc.).

The 11713A includes an integral power supply (with short circuit protection) that can simultaneously provide 125 milliamps at 24 volts to all contacts for control of the attenuators and switches, so no external power supply is needed. Each 11713A is provided with two (2) plug-in drive cables for the programmable switches to simplify connection to the driver.

The 11713A also features convenient front panel keys so the user can manually activate the individual switch sections when in the "local" mode. Switching time for the drivers is less than 10 milliseconds.

The 87130 A is a 3.5 inch high, full width system II attenuator/switch driver capable of driving up to 248 bistatic electromechanical switches or attenuator sections. The 87130 A is controlled over GPIB via standard commands for programmable instruments (SCPI) commands. The 87130A has been designed for use in both ATE switching systems and computer controlled bench top applications.

More configuration details are available on the Agilent 11713A and 87130A in literature number 5963-2038E.

Figure 2

Figure 1

Isolation and insertion loss

Isolation and insertion loss vary with
frequency and depend on the port selected, as shown in the chart and tables below. The input connector "C" is always defined as the connector at the opposite end of the switch from the dc drive cable.

The output ports are numbered sequentially from the input connector. For example, if an 8768 K is being used, use the 8768 K table to read isolation to each port. If port three (the third connector from the input) is selected, the isolation to ports 1 and 2 will follow curve A . Isolation to port 4 will follow curve B and isolation to port 5 will follow curve C . Reading from Figure 3 at 8 GHz , the worst case isolation to ports 1 and 2 will be 30 dB ; to port $4,45 \mathrm{~dB}$; and to port $5,65 \mathrm{~dB}$. Note that in selecting ports 1 or 2, isolation to disconnected ports can be varied by choosing the position of each section to "thru" or "on." The important thing to note is that, depending on the user's application, port assignments can be important to optimize performance at higher frequencies.

All isolation tables refer to Figure 3.

Specifications

Frequency range: dc to 26.5 GHz all models
or dc to 18 GHz for Option 876xK-002
(SMA connectors)

Maximum SW

Frequency (GHz):	dc to $\mathbf{8}$	$\mathbf{8}$ to $\mathbf{1 2 . 4}$	$\mathbf{1 2 . 4}$ to $\mathbf{1 8}$	$\mathbf{1 8}$ to $\mathbf{2 6 . 5}$
$\mathbf{8 7 6 6 / 7 / 8 K}$	1.3	1.5	1.6	1.8
$\mathbf{8 7 6 9 K}$	1.3	1.55	1.8	2.05

Figure 3. Isolation curves

Table 1. Agilent 8766K with switch profile and connector and pin assignments

Port selected	$\mathrm{X}=$ Activated viking cable pin/wire \# and color of ribbon pin \# ()				Section status		Isolation curve (see table 3) for port \#		
	Section 1		Section 2		1	2	1	2	3
	6 (2)	5 (13)	8 (5)	7 (11)					
	YEL	VIO	GRN	VLK					
	Conn.	Thru	Conn.	Thru					
1	X		X		On	On	-	B	D
	X			X	On	Off	-	C	B
2		X	X		Off	On	A	-	B
3		X		X	Off	Off	A	A	-

Note: Red wire, pin(1) of viking cable, or brown wire, pin(6) of ribbon cable must be connected to +24 voc.

Table 2. Agilent 8767 K with switch profile and connector and pin assignments

Port selected	X = Activated viking cable pin/wire \# and color or ribbon pin \# ()						Section status			Isolation curve (see table 3) for port \#			
	Section 1		Section 2		Section 3		1	2	3	1	2	3	4
	8 (5)	7 (11)	10 (9)	9 (3)	6 (2)	5 (13)							
	GRN	BLK	BLU	ORN	YEL	V/0							
	Conn.	Thru	Conn.	Thru	Conn.	Thru							
1	X		X		X		On	On	On	-	B	D	E
	X		X			X	On	On	Off	-	B	E	D
	X			X	X		On	Off	On	-	C	B	C
	X			X		X	On	Off	Off	-	C	C	B
2		X	X		X		Off	On	On	A	-	B	C
		X	X			X	Off	On	Off	A	-	C	B
3		X		X	X		Off	Off	On	A	A	-	A
4		X		X		X	Off	Off	Off	A	A	A	-

Note: Red wire, pin(1) of viking cable, or brown wire, pin(6) of ribbon cable must be connected to +24 voc .

Table 3. Agilent 8768 K with switch profile and connector and pin assignments

Port selected	X = Activated viking cable pin/wire \# and color or ribbon pin \# ()								Section status				Isolation curve for port \#				
	Section		Section 2		Section 3		Section 4		1	2	3	4	1	2	3	4	5
1	12 (10)	11 (4)	8 (5)	7 (11)	10 (9)	9 (3)	6 (2)	5 (13)									
	WHT	BRN	GRN	BLK	BLU	ORN	YEL	VIO									
	Conn.	Thru	Conn.	Thru	Conn.	Thru	Conn	Thru									
	X		X		X		X		On	On	On	On	-	B	D	E	F
	X		X			X	X		On	On	Off	On	-	B	E	D	E
	X			X	X		X		On	Off	On	On	-	C	B	D	E
	X			X		X	X		On	Off	Off	On	-	C	C	B	C
2		X	X		X		X		Off	On	On	On	A	-	B	D	E
		X	X			X	X		Off	On	Off	On	A	-	C	B	C
3		X		X	X		x		Off	Off	On	On	A	A	-	B	C
4		X		X		X	X		Off	Off	Off	On	A	A	A	-	A
5		X		X		X		X	Off	Off	Off	Off	A	A	A	A	-
							Note: Red wire, pin(1) of viking cable, or brown wire, pin(6) of ribbon cable must be connected to +24 voc .										

Table 4. Agilent 8769 K with switch profile and connector and pin assignments

	X = Activated viking cable pin/wire \# and color or ribbon pin \# ()										Section status					Isolation curve for port \#					
Port selected	Section 1		Section 2		Section 3		Section 4		Section 5			2	3	4	5	1	2	3	4	5	6
1	12 (10)	11 (4)	8 (5)	7 (11)	10 (9)	9 (3)	6 (2)	5 (13)	3 (8)	4 (7)											
	WHT	BRN	GRN	BLK	BLU	ORN	YEL	VIO	GRY	WT/RD											
	Conn.	Thru																			
	X		X		X		X		X		On	On	On	On	On	-	B	D	E	F	G
	X		X		X			X	X		On	On	On	Off	On	-	B	D	F	E	F
	X		X			X	X		X		On	On	Off	On	On	-	B	E	D	E	F
	X			X	X		X		X		On	Off	On	On	On	-	C	B	D	E	F
	X			X		X	X		X		On	Off	Off	On	On	-	C	C	B	C	E
	X			X		X		X	X		On	Off	Off	Off	On	-	C	C	C	B	D
	X			X		X		X		X	On	Off	Off	Off	Off	-	C	C	C	C	B
2		X		X	X		X		X		Off	On	On	On	On	A	-	B	D	E	E
		X	X			X	X		X		Off	On	Off	On	On	A	-	C	B	C	F
		X	X			X		X		X	Off	On	Off	Off	Off	A	-	C	C	C	B
3		X		X	X		X		X		Off	Off	On	On	On	A	A	-	B	C	E
		X		X	X			X	X		Off	Off	On	Off	On	A	A	-	A	B	D
		X		X	X			X		X	Off	Off	On	Off	Off	A	A	-	C	C	A
4		X		X		X	X		X		Off	Off	Off	On	On	A	A	A	-	A	C
5		X		X		X		X	X		Off	Off	Off	Off	On	A	A	A	A	-	B
6		X		X		X		X		X	Off	Off	Off	Off	Off	A	A	A	A	A	-

Note: Red wire, pin(1) of viking cable, or brown wire, pin(6) of ribbon cable must be connected to +24 voc.

Specifications, continued

Maximum insertion loss		
Port 1	$0.2 \mathrm{~dB}+0.05 \mathrm{~dB} / \mathrm{GHz}$	
Port 2	$0.2 \mathrm{~dB}+0.06 \mathrm{~dB} / \mathrm{GHz}$	
Port 3	$0.2 \mathrm{~dB}+0.08 \mathrm{~dB} / \mathrm{GHz}$	
Port 4	$0.25 \mathrm{~dB}+0.095 \mathrm{~dB} / \mathrm{GHz}$	
Port 5	$0.25 \mathrm{~dB}+0.108 \mathrm{~dB} / \mathrm{GHz}$	
Port 6	$0.25 \mathrm{~dB}+0.12 \mathrm{~dB} / \mathrm{GHz}$	

RF input power (max):
1 watt average, 100 watts peak
($10 \cdot{ }^{-s}$ pulse width)
Life (min):
5 million cycles per section
Repeatability:
0.01 dB , typ. to $18 \mathrm{GHz}, 0.05 \mathrm{~dB}$, typ. to 26.5 GHz (up to $5,000,000$ cycles)

Environmental capabilities

Temperature, operating:
$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Temperature, non-operating:
$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Altitude, operating:
$15,000 \mathrm{ft}$ (4,570 meters)
Altitude, non-operating:
$50,000 \mathrm{ft}$ (13,700 meters)

Humidity:

Cycling 5 days, $40^{\circ} \mathrm{C}$ at $95 \% \mathrm{RH}$ with condensation

Shock, operating:
10 g 's, 6 ms , on six sides, three blows
Shock, non-operating:
500 g 's, 1.8 ms , in six directions
Vibration, operating:
5 g's, 34 to 2000 Hz

EMC:

Radiated interference is within the requirements of MIL-STD-461B method RE02, VDE 0871, and CTSPR Publication 11.

Ordering information

Microwave single-pole multi-throw switches
8766K Single-pole, three-throw
8767K Single-pole, four-throw
8768K Single-pole, five-throw
8769K Single-pole, six-throw

Options

To add options to a product, use the following scheme:

Model:	$876 \times K(x=6,7,8,9$
Model options:	$876 x K-O p t i o n ~ 001$
	$876 x K-O p t i o n 002$

Supply voltage (must choose one)

$876 \times K-011$	5 V solenoid
$876 \times \mathrm{K}-015$	15 V solenoid
$876 \times \mathrm{K}-024$ option)	24 V solenoid (standard

RF connectors (must choose one)	
$876 \times \mathrm{K}-002$	SMA female connectors
876xK-004	3.5 mm female (standard
option)	

DC connectors	(must choose one)
$876 \times K-016$	16 inch ribbon cable
$876 \times K-060$	5 foot dc control cable;
	12 pin "viking"
	(standard option)

Calibration documentation (optional)
876xK-UK6 SWR and insertion loss data measured with an automatic network analyzer with very small uncertainties; directly traceable to NIST standards. Calibration frequencies: 1.5 to 26.5 GHz , every 0.25 GHz .

Other combinations can be created for your applications; refer to Agilent Application Note 332-1.

Mechanical information

Net weight:	$\mathbf{8 7 6 6 K}$	$\mathbf{8 7 6 7 K}$	$\mathbf{8 7 6 8 K}$	$\mathbf{8 7 6 9 K}$
	$\mathbf{1 7 8}$ grams	235 grams	292 grams	349 grams
	$(6.3 \mathrm{oz})$	$(8.3 \mathrm{oz})$	$(10.3 \mathrm{oz})$	$(12.3 \mathrm{oz})$

Mounting position: For any orientation, holes are threaded for a metric screw
(m $3 \times 0.5 \times 5.1$ deep).A
RF connectors: 3.5 mm female (SMA compatible)
Option 876xK-002 SMA (for use only to 18 GHz)
Switching speed: Maximum 20 msec including settling time

Solenoids	Coil voltage	Switching current $^{\mathrm{B}}$	Nominal coil impedance
Standard	24 V	130 mA	185 Ohms
	$(20$ to 30 V)	(at 24 V)	
Option $876 \times \mathrm{K}-015$	15 V	187 mA	80 Ohms
	$(13$ to 22 V)	(at 15 V)	
Option $876 \times \mathrm{K}-011$	5 V	332 mA	17 Ohms
	(4 to 7 V)	(at 5 V)	

B. Current per section; approximately 8 msec duration before internal contacts open the coil circuit.
Accessory provided (except Option 008 and 016): Solenoid drive plug on 5 -foot cable included. (Replacement plug and cable assembly available as part number $8120-2178$, except $8769 \mathrm{~K} p / \mathrm{n}$ 5061-0969.)

C. This dimension applies to connectore on each end of the switch. Connectors between the ends are 0.05 inches taller.

Figure 4. Dimensions in millimeters and (inches)

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

(-) Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent Open

www.agilent.com/find/open
Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilenttrained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.
Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas

Canada	8778944414
Latin America	3052697500
United States	8008294444

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	81426567832
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	0820874411
Belgium	$32(0) 24049340$
Denmark	4570131515
Finland	358 (0) 108552100
France	0825010700^{*}
	${ }^{*} 0.125 €$ fixed network rates
Germany	01805246333^{*}
	${ }^{*} 0.14 € /$ minute
Ireland	1890924204
Israel	$97239288504 / 544$
Italy	390292608484
Netherlands	31 (0) 205472111
Spain	$34(91) 6313300$
Sweden	$0200-882255$
Switzerland (French)	41 (21) 8113811 (Opt 2)
Switzerland (German)	0800805353 (Opt 1)
United Kingdom	44 (0) 1189276201
Other European Countries:	
www.agilent.com/find/contactus	
Revised: October 24, 2007	

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated.

Pentium is a U.S. registered trademark of Intel Corporation.

Product specifications and descriptions
in this document subject to change
without notice.
© Agilent Technologies, Inc. 2002, 2006, 2007
Printed in USA, November 29, 2007
5959-7831

